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Abstract. As the nonlinear parameter, k of Zaslavsky’s map with twist increases, chains of 
periodic points are bom simultaneously at the origin and move outwards. The positions of 
the periodic points as a function of k is investigated, Bnd in a limited number of cases an 
analytic result is found, When k is very small, it is found that there is a universal relation 
for the radius of the periodic points as a function of the nonlinear parameter. 

1. Introduction 

It has been well established that insight into the behaviour of dynamical systems may 
be obtained by studying fhe properties of maps derived from the equations of motion. 
One way to derive a map is to record dynamical variables at (well separated) equal 
time intervals, equivalent to examining it under a stroboscopic lamp. An alternative 
way is to use the technique of the PoincarC section, in which data is recorded 
whenever some dynamical variable has a predetermined value. 

Many of the maps studied involve only one or two dynamical variables, e.g the 
one-dimensional logistic map and the two-dimensional standard map and Zaslavsky’s 
map with twist. It is this last map, sometimes referred to as the stochastic web map, 
that we shall discuss in this paper. 

Zaslavsky’s map with twist, M. is defined by 

= (xi+ k sin(yi)) cos(2nln) +yisin(2dn) 
M~(k):  = - (xj+ k sin(y,)) sin(k/n) +yicos(2n/n), (1) 

k is called the nonlinear parameter. The properties of this map, hereinafter referred to 
as the map with twist, are most interesting at resonance when the rotation number n is 
an integer: usually a small integer: 3, 4, 5 or 6: Some trajectories of this map are 
shown in figures 1 and 2. 

The map with twist M. has been extensively studied (Chernikov et al 1987, 
Borcherds and MOuley 1991, Zaslavsky et a1 1991). It describes the dynamics in 
velocity space of a charged particle in a uniform steady magnetic field, subjected to an 
orthogonal electric field wavepacket. The harmonic components of the wavepacket 
have equal amplitude, and equal frequency spacing. How the map equations (1) are 
derived from the physical model is discussed in some detail by Zaslavsky et al(1986). 

The properties of a map are conveniently studied through the behaviour of its 
fixed points and periodic points: those points which are mapped into themselves after 
a finite number of iterations of the mapping. (A fixed point is a special case of a 
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Figurel. Trajectories of the map with twist with n=5, k=0.3, showing the (broken) 
intrinsic 5-fold symmetry of the map far from the origin. 

periodic point: a fixed point is mapped into itself by a single application of the 
mapping.) In a two-dimensional map the existence of periodic points is shown by 
trajectories which appear to form islands around elliptic periodic points and by 
trajectories with sharp bends which occur near hyperbolic periodic points. One of the 
advantages of studying maps with only one or two variables is that it is possible to 
show graphically the result of iterating the map many times. (In, many cases such 
graphical iterations produce striking images.) 

When the nonlinear parameter k is zero, the map with twist displays n-fold 
rotational symmetry: there is a single (elliptic) fixed point at the origin. For integer 
values of n, every other point in the plane is mapped into itself after n applications of 
the mapping, i.e. every point in the plane is a periodic point of period n when k=O. 
(A similar result holds when n is a vulgar fraction.) This result is equivalent to the well 
known result that charged particles in a uniform magnetic field move in circular orbits, 
and that the frequency of rotation does not depend upon the velocity. At resonance, 
the map with twist is equivalent to strobing the motion of the charged particles at a 
multiple of the cyclotron frequency, in which case after n flashes of the strobe, a 
particle will have returned to its original position. 

It can be shown by studying the associated Hamiltonian function (Borcherds and 
MsCauley 1991), that there are discrete sets of points in the plane which remain as 
n-fold periodic points for finite values of the coefficient k. These discrete n-fold 
periodic points are the critical points of the hamiltonian function and are immobile in 
that their position does not depend on the value of k. We shall not further explicitly 
consider these immobile periodic points. 
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In addition to the immobile points of period n there are also, for all values of k 
greater than zero, other sets of discrete periodic points, whose period is in general not 
equal to n. The position of such points depends upon the value of k. In particular, as k 
is increased, multiple sets of points are created at the origin: as k is further increased, 
such sets of points move outwards from the o n e ,  as shown in figure 2. 

In this paper we study the conditions for creating such a multiple set of points at 
the origin, in a 'multifurcation', that is the simultaneous production of several related 
periodic points, and also study how the position of such points changes as k increases. 

For very small values of k we shall show that there is a near universal relationship 
relating the position of such periodic points to the value of k at which the points were 
created at the origin. This relationship implies that for even the smallest finite value of 
k there are sets of periodic points with period other than n at all distances from the 
Origin. 

1.1. The general map with twist 

Some of the results we shall be discussing apply to other maps as well as to the map 
with twist defined in equation (1). We define the general map with twist G. by the 
equations: 

x,+,= (x,+ kG(y,)) cos(znln) f y ,  sin(2nln) 
Gn(k): x,+,= - (x,+ k ~ ( y , ) )  sin(k/n)+y,cos(k/n). (2) 

..,.' ~ 

.. 
*..(b.. - .-.---.-.- ._-_______ :._.._.- , 

-I 

-1 U 1 

Figure 2. Trajectories of the map with twist with n=5, k=0.6633, showing the period4 
elliptic and hyperbolic periodic points near the origin. These points are born at the origin 
when k=0.6498. 
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where G(y)  is a function which can be represented by a Taylor series expansion about 
the origin. Our discussion will be limited to functions G(y) whose Taylor series 
expansion contains only odd powers of y ,  so that the general maps we consider, like 
the map with twist, include only odd powers of x and y, and have odd parity. 

H6non (1969) studied the properties of quadratic area preserving maps. He 
derived very general relations for the generation of fixed and periodic points as a 
parameter increases. The maps we consider here do not have an explicit quadratic 
term, which leads to qualitative differences in the behaviour at the origin. However as 
the parameter k increases, we have observed that the multifurcated points we are 
studying do themselves eventually lose stability, and when so doing, they appear to 
follow the general route found by H6non. 

P H Borcherds and G P M'Cauley 

2. Rate of rotation at the origin 

When k = 0 the map with twist, M. gives a uniform rotation about the origin, through 
an angle 2zh,  and the associated Hamiltonian function has this symmetry too. When 
k is small, the trajectories of the map follow the contours of the Hamiltonian function 
closely. However as k increases the symmetry of the map near the origin changes, as 
can be seen in figure 2, in which n=5,  a value which is not apparent from a visual 
inspection of the figure. 

As k increases the rate of rotation about the k e d  point at the origin increases 
steadily, but at large distances from the origin the mapping maintains an overall n-fold 
rotation broken symmetry: the trajectories trace out n paths (or 2n paths, if n is odd) 
which look like caricatures of each other rather than being identical rotated images, as 
can be seen in figure 1. 

The rate of rotation at the origin may be determined by calculating the trace of the 
linearized form of the map, obtained from equation (1) by replacing sin(y) by y. For 
the map M.(k) the trace at the origin is 

trace(Mn(k)) =2cos(k/n) - k s i n ( k / n ) .  (3) 
Thus the angle of rotation at the origin is (2nlm) where we define the effective rotation 
number m at the origin from 

2 cos(k/m) = 2 cos(2n/n) - k sin(2 d n ) .  (4) 
Greene et ai (1981), considering rotations about a fixed point, define a quantity 

which they call the residue R 

R = (2 - trace(M))/4. (5) 
When the residue lies between 0 and 1 (or the trace lies between -2 and 2), the point 
is an elliptic point, and the (mean) rotation angle is (znlm) given by 

sin'(2dm) = R. (6) 
For other values of the residue, a k e d  point is hyperbolic. 

rotation at the origin increases, as observed. 

origin. From equation (4) we find 

As k increases, the rotation number at the origin, m decreases, i.e.the rate of 

We define kn,m to be the value of k for which the M. has rotation number m at the 

kn.,=2(cos(2z/n) - cos(2z/m))/sin(k/n). (7) 
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The behaviour of the mapping close to the origin is particularly interesting when m 
is either an integer or when m =plq .  a rational number whose denominator q is a 
small integer. We assume that p and q are integers with no common factor. When 
k= kn,plq (see equation (7)), there is ap-fold multifurcation at the origin, in which two 
or four sets of p-fold periodic points are created. Whenp is even there is a single set of 
p elliptic points, while if p is odd there are two interleaved sets of p elliptic points. 
Between each pair of elliptic points is a hyperbolic point. 

In the interests of brevity and clarity we shall generally refer to the rotation 
number associated with the number of islands as m, and only explicitly refer to plq 
when it is essential to do so. The symmetry of the map is such that periodic points 
always occur in degenerate pairs, lying on opposite sides of the origin. We shall 
implicitly only consider one point of such a degenerate pair, again in the interests of 
brevity and clarity. 

As k increases above the critical value kn,plq at which the rotation number at the 
origin is p / q ,  it is found that the sets of p-fold periodic points move outwards from the 
origin, as described in the next section. 

The phase trajectories associated with the hyperbolic points are called separa- 
trices. There are pairs of &paratrices between a hyperbolic point and each of its 
immediate neighbouring hyperbolic points: each pair of separatrices defines an island 
around the interleaved elliptic point. The islands associated with a ring of elliptic 
points appear rather like beads on a string, and are referred to as a necklace (of 
islands). As k increases the necMace moves away from the origin: each periodic point 
moves outwards from the origin. 

In most cases the pair of separatrices defining an island, joining two hyperbolic lie 
close together: the island they enclose is very narrow compared with its length indeed 
in most cases it is extremely difficult by visual inspection to identify the separatrices as 
two trajectories. Only for m=4 are the islands ‘fat’, as shown in figure 2. 

2.1. m ~ = 2  

The elliptic point at the origin loses stability in a saddle node bifhrcation when 

(see equation (7)). At this value of k a pair of elliptic points is born, while the origin 
becomes a hyperbolic point. The range of values of the rotation number m we shall 
consider is~n a m 2  2. 

k=k,,,=Zltan(dn) ~, (8) 

3. The growth of the necklaces 

As k increases above kn,p,q the sets of periodic points move outwards from the origin. 
We shall refer to the distance between a periodic point and the origin as the radius of 
the point. 

In all the cases we have examined (except m=2) there are found to be periodic 
points on four special lines passing through the origin; namely (i) a line making an 
angle ( - d n )  with the x-axis, (i) a line at right angles to (i), (iii) the x-axis and (iv) a 
hne making an angle (- h / n )  with the x-axis. The line with slope ( -ah) is a 
symmetry line of the map. 
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The four sets of periodic points have coordinates and radii: 

Type Coordinates Radius Equation 

This notation is appropriate for these twist maps, since we shall find, at least in some 
cases, formulae for x,, or yo, and moreover, in some cases the values of the 
y-coordinates for periodic points of type (i) and type (ii) are equal. 

It can easily be seen, from equation (1) that a point of type (iii) maps into a point 
of type (iv) lying on the line passing through the origin, with slope (- 2z/n).  Thus 
type (iv) points are trivially related to type (i) points. 

An initial numerical exploration of the map suggested that for small values of 
Ak(Ak= k - k,,,,,) the radius of the sth periodic point in the chain was proportional to 
V(Ak/knJ 

where the constant of proportionality, Q,,,,$ depends on the values of n, m and is 
generally not the same for all periodic points in the chain. As we shall see in the next 
section, equation (10) is an approximation, valid only when the higher order terms in 
G(y)  (equation (2)) may be neglected. 

If there were a single equation, like equation (lo), relating the radii of all the 
points in the chain to the parameter k, that would imply that the shape of a chain 
would not change as k was varied. However the shape of the chain, which depends 
strongly on the values of n and m, also depends weakly on the value of k. When m is 
very close to n (and kn,,,, is very small, see equation (7)), the periodic points lie very 
nearly on a circle. As the difference between n and m increases the oval on which the 
periodic points lie becomes increasingly elongated; with its major axis lying on the 
symmetry line of the map, with slope ( - d n ) .  

To determine analytically how the position of a periodic point with rotation 
number p / q  depends on the value of k would involve the repeated application of the 
map (equation (1)) p times. Like all nonlinear maps, the map with twist becomes 
intractable when iterated. Even the second iteration is in general intractable: the use 
of computer algebra packages such as Reduce or Maple still leaves results too 
complicated to yield real insight. However, from the numerical results it was observed 
form = 3,4 and 6, and for a fixed value of the ratio klk,,, , that several of the periodic 
points in the chain had the same value for the y-coordinate. This encouraged us to 
search for simple relations for those periodic points with this property: the relations 
found are described in the next section. 

In the initial numerical work we examined how the radii of the periodic points 
depended on the values of the intrinsic rotation number, n, and the effective rotation 
number, m. Some results for the different types of periodic points are shown in figures 
3 and 4, for n = 4 and n =6 respectively, for Ak/k.,,= 10-9 For other values of n the 
results are similar to figure 4. 

In the limit where m approaches n (when k",,,, approaches zero) on the right hand 

r k , n , m . s z  Qn,m,s V(Ak/kn,m) (10) 



Multifurcationr of Zaslausky‘s map 6211 

0 

0 

0 0  

0 0  

+ + + * + * P  
+ + . . e *  

* 
+ . . 

+ . 
+ . 

+ . . 
+ . . 

+ . 
+ I  

+ . 
EffeOtlve rotdlon numbcr. n 

Figure3. The ‘radius’ of periodic points of types (i) 0, (U) 0 and (iii) + for n=4  and 
Aklk,=10-6. 
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mpure4. The ‘radius’ of periodic points of types (i) 0, (ii) 0 and (iii) + for n=6 and 
Aklk,= note m=4 is anomalous. 
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side of the figures, Q,,,,, approaches a constant value (d8) for all three types of 
periodic points, and the necklace of islands is circular. As m decreases, the island of 
necklaces associated with a set of periodic points becomes increasindy elongated: this 
is reflected in the separation of the upper and lower curves in these two figures. At 
m = 2  there are only two type (i) periodic points, the radii of the other types of 
periodic points approach zero as m approaches 2. The variation of radius with m is 
smooth, except when m = 4, when the results are anomalous, as can be seen in figure 4 
in many of the cases we have studied, the value of 

In initial investigations the intrinsic rotation number of the mapping, n was set 
equal to a small integer, and chains with rotation number m investigated. If n is an 
integer and m = n - l lq ,  it is necessary to carry out (n q - 1) iterations to map a 
periodic point onto itself. It was found impractical to make q greater than 1000: for 
greater values the effect of rounding errors resulted in inconsistent results (when 
carrying out calculations with a precision of about 10-7. The investigations for very 
small values of k (large values of q) were considerably speeded up when it was realised 
that instead of making n an integer and keeping it constant while varying m, the 
problem could be inverted make m a small integer (3 ,4 or 6) and vary n: n takes on 
fractional values close to m, say m + liq. Now, irrespective of the value of q it is 
necessary to carry out only m iterations to return to a periodic point and this allowed 
the system to be studied for much smaller values of (n-m). 

is equal to Qn,n.3,s. 

4. Some values of m: 2,3,4 and 6 

Inspection of the values of the coordinates of the complete cycle of periodic points 
shows that in many cases pairs of points not too far apart in the chain have the same 
ordinate. This observation encouraged us to look for analytic results. In some cases 
we found that the pattem of cumbers was no more than an identity, but in others we 
did manage to find, for certain values of m, results which enabled us to obtain an 
explicit relation between the coordinates of a periodic point and k. 

The values of m for which we have been able to derive some analytic results are 
m = 2,3,  4 and 6. We note that these are the rotation numbers allowed in a periodic 
tiling of the plane. 

The analytically tractable cases are those for which y t ,  the ordinate of the first 
iterate, of a type (i) or a type (ii) periodic point (see equation (9)) is either zero or else 
numerically equal to yo, the ordinate of the point being mapped. 

4.1. Type (i) periodic points 

coordinate of the lint iterate 
'Applying the general map with twist to a type (i) periodic point we obtain for they- 

y 1  =yo(l  + 2 cos a) - k G b o )  sin a. (11) 
Examining the numerical results we find that when m = 2 then y1 = -yo, when m = 3 
then y1 = 0, and when m = 4 then y ,  =yo  From these results we obtain relations for the 
value of yo  for the three cases which can all be written 

where kn,, is the critical parameter value at which the appropriate set of periodic 
points is bom. 
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4.2. Type (ii) periodic points 

There is no period 2 type (ii) periodic point. Examining the numerical results, we find 
that when m=4 then y,= -yo, and when m = 6  then y,=O, and for both cases yo 
satisfies equation (12). 

When m = 3 we find from the numerically that yz =yw 
The general expression for the y coordinate of the second image of a type (ii) 

periodic point is 

y2 = (4 cos2 a - 2  cos a - ])yo -k sin a 12 cos &(yo) 

+G{(2cosa-l)yo-~sinaG(yo)}]  (13) 
where a = k i n .  

When m = 3  

k,,,=(2cosa+l)/sina (14) 
Setting y ,=yo ,  and making the substitution for kn,, from equation (14), we derive, 
from equation (13),   the relation 

yo= (k/kn.,)[2cosa G(vj+G{(Zcosa-l)y , -ksina G(yo)]]l{2(cos&- 1)).  (15) 
The dependence of y upon k given by equation (15) is qualitatively different from 

that given by equation (12). In particular we note that k appears inside the argument 
of G, and not only in the ratio klk.,,. 

4.3. m = 3  

When m = 3, the three elliptic points are’of~types (i), (i) and (iv). For two of them the ’ 

y-coordinate satisfies equation (12), and the radius of the type (iv) point is equal to 
that of the type (ii) point.  the^ shape and orientation of the f i b e  defined by these 
points is independent of k. 

The position of the hyperbolic point, which is of type (U) is determined by 
equation (15), thus the shape of the chain of all the periodic points does depend~on k. 
Thus for m=3 we see that the radii of tile type (i) (elliptic) periodic~points and the 
type (ii) (hyperbolic) periodic points grow at different rates, thus the shape of the 
chain of islands changes as it grows. 

4.4. m=4  
As can be seen from figure 4, the results for m = 4 are anomalous: it appears that it is 
only when m is exactly equal to 4 that there is an anomaly. We have measured the 
‘radius’ of periodic pointsfor m=4.0001 and for m=3.9999; for neither of these 
values of m are the results anomalous. 

When pn = 4 ,  the two elliptic points are of type (i) and (ii): their y-coordinates are 
equal, and are determined by equation (12). The two hyperbolic points are of type 
(iii) and (iv): their radii are equal, and the y-coordinate of the type (iv) point is also 
determined by equation (12). When n =‘6 it is easy to show that the periodic points of 
type (ii), (iii) and (iv) all have the same radius. 

AU~the periodic points for m = 4  lie on special lines, the shape and orientation of 
the chain of periodic points is independent of k. It appears from visual inspection that 
the islands defined by the separatrices do not change in shape as k increases. It also 
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appears that the separatrices lie on a pair of intersecting ellipses, but this has not been 
verified analytically. 

P H Borcherds and G P M'Cauley 

4.5, m = 6 

For m=6,  the three hyperbolic points are of types (ii), (iii) and (iv). For two of them 
the value of the y-coordinate is given by equation (12), and the type (iv) point has the 
same radius as the type (ii) point, thus the shape and orientation of the figure defined 
by the hyperbolic points is independent of k. 

The position of the type (i) point, which is elliptic is determined by an equation 
(similar to equation 15) for which an analytic solution is not practicable. The second 
image of this point has the same value of the y-coordinate as the point itself. As for 
m=3, the two sets of points do not have the same dependence on k. The shape of the 
chain is not constant. 

4.6. Other values of m 

For other values of m we have not succeeded in deriving any relations. For m = 5 we 
observe that type (i) periodic points satisfy y,= -yo and type (U) points satisfy y, =y,. 
For m = 8,  type (i) periodic points and type (i) periodic points belong to the same 
cycle and satisfy y3 =yo. For the type (i) periodic points we observe y3 =y,. None of 
these results will yield expressions simple enough to be worth pursuing analytically, 
but it is clear from them, and from the discussion of equation (15) that the shapes of 
the chains of periodic points do depend on the value of k. 

5. A universal l i t  as m+n (k+O) 

The numerical results show that the necklace of islands is elongated along the 
symmetry line of the map, and that the 'eccentricity' of the necklace increases as 
(n-m)  increases. As (n-m)  decreases to zero the necklace becomes increasingly 
circular, and as the radii tend to zero, they aU tend to the same value, both for elliptic 
and hyperbdic points (except when m = 4). 

When m=3 the y-coordinate of the (elliptic) periodic point of type (i) is given by 
equation (12): this periodic point has coordinates (-yo/tan(dn),ya), and its radius is 
y0/sin(dtz). 

The other two period-3 elliptic periodic points have coordinates (y,/sin(z/n), 0) 
and (yo/tan(2z/n), -yo), and they both have radius y,/sin(h/n). 

To obtain an explicit formula for the radius in the limit k+O, we set G(yo)= 
sin(y,,) in equation (12) and expand it as a Taylor series: 

1 +y2/6+ O(y4)= 1 +Ak/k,., (16) 
or 

yo = d(6Ak/kn. ,J. 
In the limit n+3 we obtain for the radius, r for all three elliptic points, since 
sin(d3) = sin(d6) 

r= d(8Ak/kn.,). (18) 
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For all other values of m except m = 4 the radius as calculated numerically agrees 
withequation (18)inthelimitn-m+O, butthis(m=3)istheonlywseforwhichan 
analytic result has been obtained. 

We note from figure (4) that m = 4 is anomalous: the type (i) elliptic points, on the 
symmetry axis satisfy equation (18), but the radii of the hyperbolic points are smaller 
by a factor d 2 .  

6. Discussion 

By using a combination of numerical and analytic techniques to investigate the 
positions of the multifurcated m-fold periodic points of the map with twist which are 
created at the origin, we have been able to obtain a universal result (equation (18)) for 
how their radii depend on the nonlinear parameter k ,  when k is small. This is 
illustrated in figures 3 and 4, where all the curves tend to the same point for k = 0, at 
the right-hand side of the figure. 

A general direct analytic approach is impractical, as the iterated expressions of the 
map are intractable, however, from numerical results, some simple relations involving 
only a single iteration of the mapping were observed for certain values of the 
periodicity m of the points, and these relations, have enabled us to identify cases 
susceptible to an analytic treatment. 

When m, the rotation number of the points in the chain, is close in value to n, the 
intrinsic rotation number of the map, it is convenient to write m = n  - l/q. Then the 
value of k.,,, in the limit of large q is 

k, , ,  = 2 sin(2dq) = h / q  = 4 4 n - m ) .  (19) 
Combining equations (17) and (19), we see in the l i t  as ( n - m ) 4 0 ,  that for 

even the smallest value of k greater than zero, there are sets of multifurcated periodic 
points, which were created at the origin, at large distances from the origin. How far 
such a set of multifurcated points is from the origin depends on the ratio Aklk,,,. The 
smaller the value of k,,m, the further, for a given value of Ak are the points kom the 
origin. 

The rate at which a periodic point moves away from the origin as k increases 
depends upon the.ratio Ak/k,;,, the smaller the value of k , ,  the faster the rate at 
which periodic points move away. When k is tiny, then q is large, and so too is the 
number of periodic points, namely (q n - 1). 

No matter how small k is, there are periodic points at all distances, whose distance 
from the origin increases rapidly as k increases. As k+O, the number of periodic 
points in a chain increases without limit: the chain of periodic points becomes 
increasingly difficult to distinguish from a -continuous curve, but nevertheless is 
comprised of alternating elliptic and hyperbolic points. In the limit, when k= 0, then 
all the points in the plane are periodic points (of period n), and the distinction 
between elliptic and hyperbolic points ceases to have any meaning: the sole exception 
is the origin itself, which is afired point (period 1). 

- 
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